スタッド配置したⅠ形鋼を芯材とした複合構造橋脚の交番載荷実験

Cyclic loading test on composite bridge pier with studs placed on I-beam webs

宇野州彦[†], 池野勝哉*, 藤倉修一**, 篠田佳男*** Kunihiko Uno, Katsuya Ikeno, Shuichi Fujikura, Yoshio Shinoda

```
†博(工),五洋建設株式会社,技術研究所(〒329-2746栃木県那須塩原市四区町1534-1)
```

*博(工),五洋建設株式会社,技術研究所(〒329-2746栃木県那須塩原市四区町1534-1)

```
**Ph.D., 宇都宮大学准教授, 地域デザイン科学部 (〒321-8585 栃木県宇都宮市陽東 7-1-2)
```

***博(工),日本コンクリート技術株式会社(〒130-0026 東京都墨田区両国 4-38-1)

RC piers are required to have improved seismic performance, so there some concerns that the reinforcement bars are overcrowded and work efficiency is reduced. We proposed a composite structure with studs placed on I-beam webs. In this study, we fabricated a composite bridge pier that incorporates the proposed structure as the core of the pier, and confirmed its structural performance by a cyclic loading test. As a result, it was confirmed that the composite bridge pier has the same load bearing performance and ductility compared to the RC pier. Furthermore, since I-beams have higher buckling resistance than rebars, it was shown that there is a possibility that the number of lateral ties and cross-tie rebars can be reduced in the proposed composite pier compared to the RC pier. *Key Words: composite bridge pier, stud, I-beam, cyclic loading test* $\pm - \mathcal{D} - \mathcal{F}$: *i*@ch#i=#fa#im, $\mathcal{A} \mathcal{A} \mathcal{Y} \mathcal{F}$, I *Fi*#im, \mathcal{X} #implies the same interval of the state is a possibility for the state is a provide to the the family of the state is the proposed composite pier compared to the family in the provide the proposed for the pier. *Key Words: composite bridge pier, stud, I-beam, cyclic loading test* $\pm -\mathcal{D} - \mathcal{F}$: *i*@ch#i=#implies.

1. はじめに

1995年に発生した兵庫県南部地震や2011年の東北地 方太平洋沖地震等,近年発生している地震は巨大化して おり,鉄筋コンクリート橋脚(以下,RC橋脚)に要求さ れる耐震性能の向上が求められている¹⁾.そのため,RC 橋脚は鉄筋量が増加し,過密配筋によるコンクリートの 充填性の低下や作業効率の低下が懸念されている.一方, 近年は現場の人員不足を背景に生産性向上に関する取り 組みが急務であり,効率的な施工方法が求められている.

著者の一人は、橋脚施工の合理化を図ることを目的に 突起付きH形鋼を芯材とした鉄骨コンクリート複合構造 橋脚²を開発し、すでに多くの橋脚で採用されている. また、鉄骨とらせん鉄筋を組み合わせた鉄骨鉄筋コンク リート橋脚³や、主鋼材に鋼管を用いた鋼管コンクリー ト合成構造橋脚⁴等、橋脚の合理化施工技術として複数 の工法が確立されている.主鉄筋を形鋼や鋼管に置き換 えるこれらの工法は、形鋼および鋼管と周囲のコンクリ ート間の付着性能が異形鉄筋と比較して劣ることから、 H 形鋼のフランジに突起を設けたり、リブ付き鋼管を用 いたりすることで付着力を確保し、鋼材とコンクリート が一体となって挙動するものとしている.しかしこれら の工法は特殊鋼材を使用するために、施工時に納期やコ ストを要する点が課題となっている.

そこで著者らは、橋脚の合理化施工技術として、I 形鋼 のウェブにスタッドを配置した鋼材を用いた複合構造 (写真-1)を提案している(以下,提案構造).I 形鋼, スタッドともに広く普及している材料であることから, これまでの工法と比較して、納期の短縮、コストの低減 が可能と考えられる.提案構造では、I 形鋼にスタッドを

写真-1 ウェブにスタッドを配置した I 形鋼

[†] 連絡著者 / Corresponding author

E-mail: kunihiko.uno@mail.penta-ocean.co.jp

配置することによってコンクリートとの付着力を確保す るだけでなく、軸方向引張力が作用した際にフランジ間 が狭まるポアソン効果によりフランジ間のコンクリート に圧縮力を作用させることでさらなる付着力の向上にも 期待している.提案構造におけるコンクリートとの付着 特性や曲げ耐荷性能を把握するために、これまで両引き 試験 ⁹や提案構造を芯材とした梁の曲げ載荷実験 ⁹を実 施し、付着性能や曲げ耐荷性能は RC 構造と同等である ことを確認している.

本研究では、提案構造を橋脚に適用することを検討す る. I 形鋼を芯材とした橋脚(以下, 複合構造橋脚)は, 従来の RC 橋脚と比較して複数の鉄筋を単一の I 形鋼に 置き換えることが可能になるため、施工の合理化が可能 となると考えている、一方で、橋脚の帯鉄筋や中間帯鉄 筋は、橋脚のせん断耐力を向上させ曲げ破壊型の破壊形 態となるように配置されるが、橋脚に作用する繰り返し 荷重が大きくなる際に、主鉄筋が座屈して橋脚からはら み出すことを抑制する働きも有している. 提案構造に用 いるI形鋼は鉄筋に比べ座屈抵抗性が高いと考えられる ことから、帯鉄筋や中間帯鉄筋を低減できる可能性があ ると考えている. 座屈荷重を算定する場合, 座屈荷重と 断面二次モーメントは比例関係にあることから、断面二 次モーメントの大きい方が座屈荷重も大きくなる. 断面 積が等価なI形鋼と鉄筋を比較した場合,I形鋼の方が断 面二次モーメントは大きくなるため, I 形鋼を用いる場 合には鉄筋と比較して座屈抵抗性が高くなると考えられ る。なお、使用する鋼材の材端条件や座屈長さ、ヤング 係数が両者で大きく異なる場合には、これらも考慮した 上で座屈抵抗性を議論する必要がある.

本論文では、I 形鋼を芯材とした複合構造橋脚を対象 として正負交番載荷実験を実施し、RC 橋脚と比較して 繰り返し荷重作用時の耐荷性能や変形性能を把握する. さらに、帯鉄筋や中間帯鉄筋を低減した際の構造性能へ 与える影響について考察する.

2. 提案する複合構造橋脚の概要

2.1 構造概要

スタッドは一般に鋼材とコンクリートで構成される複 合部材としての一体化を図るために、鋼材とコンクリー ト間のずれ止めとして利用される^{7,8}.提案構造において は、写真-1に示すようにI形鋼のウェブにスタッドを 配置して周囲のコンクリートとの一体化を図ることとし ている.提案構造では軸方向引張力が作用すると、ポア ソン効果によって軸直角方向には圧縮力が作用する.こ れによりウェブ両端に位置するフランジ間の距離が狭ま り、フランジ内面とコンクリートとの摩擦力が増大し、 フランジ間のコンクリートとの一体性が増すことが期待 される.よって提案構造では、ポアソン効果にスタッド のずれ止め効果が加わることにより、鋼材とコンクリー トとの付着性能が向上するものと考えられる.

2.2 1 形鋼のポアソン効果とスタッドの設計法

本節では、スタッドを配置した I 形鋼に軸方向引張力 が作用する際の I 形鋼のポアソン効果によるフランジ内 側に作用する摩擦力の算定と、配置するスタッドの設計 法について述べる.設計法の詳細については、既報 ⁵に て記載しているのでそちらを参照されたい.

スタッドの数量や配置を決めるための概略設計フロー を図-1に示す.また、I形鋼に軸方向引張力が作用した 際にポアソン効果によって鋼材および周囲のコンクリー トに作用する荷重等を模式的に表したものを図-2 に示 す.

I 形鋼のウェブに引張降伏力が作用すると、ポアソン 効果によってウェブ両端にあるフランジとその間にある コンクリートとの間に圧縮力が作用するが、この圧縮力

図-2 軸方向引張力が作用した際のポアソン効果

の算定には、I 形鋼とコンクリートとの付着が連続的に 確保できるための必要長さである有効定着長 L を設定す る必要がある.また、コンクリートの圧縮にはフランジ 幅全域が寄与するものではなく、ある有効幅 b がコンク リートの圧縮に影響を与えていると考えられる.またそ の有効幅 b は、フランジ厚さによって変わるものと推察 される.これらに関して、過去に実施した両引き試験 ⁹ において有効定着長 L はウェブ高さの概ね 6 倍以上に設 定すると定着が確保されていることが分かり、フランジ 有効幅 b はフランジ厚さの概ね 2 倍程度であることが分 かったが、これら有効定着長とフランジ有効幅の妥当性 や定量的な評価については、今後のさらなる検討が必要 である.

フランジ内側に作用する摩擦力 T_1 が算出されると, I 形鋼の全断面積で負担する全引張降伏力 T との差分であ る T_2 (=T- T_1)がスタッドで負担するせん断力となる. なお, 全引張降伏力 Tに対する $T_1 と T_2$ の負担比率は, 概ね2: 8 となる. この比率は引張荷重が段階的に変化してもそ れに応じて摩擦力 T_1 が変化するため変わらない. また, ひび割れ発生後においてもフランジ間のコンクリートの 剥落等がなければ, 摩擦力 T_1 の低減は見られないことは 既往の研究 ⁹で明らかにしている. スタッドの数量は, 複合構造標準示方書 ⁹に従い算定する. スタッドが負担 する荷重を文献 9)で求めたスタッド1本あたりの設計せ ん断耐力で除すことにより, スタッドの必要本数が求め られる.

2.3 複合構造橋脚の断面設計

提案構造を芯材とした複合構造橋脚の断面を設計する 際には、従来の RC 橋脚と同等の断面性能となるために 必要な鋼材量および鋼材の配置検討が必要となる.著者 らが実施した曲げ載荷実験のにより、従来の RC 断面で 必要とされる主鉄筋の鉄筋断面積と降伏強度を考慮して それと等価な1形鋼を用い、主鉄筋の設計有効高さを1形 鋼のウェブ中心位置に合わせることで、提案構造は従来 のRC断面と同等の曲げ耐荷性能を有することを確認し た.したがって、複合構造橋脚の断面検討を行う際には、 I形鋼のウェブ位置(重心位置)に断面積が集中している ものとして、RC 断面と同様に平面保持を仮定してひず みー応力分布から力の釣合い条件により曲げモーメント Mを算定することができる.また、断面の大きな橋脚で は一般に多段配筋されることがあるが、この場合には図 -3 に示すようにその多段鉄筋の重心位置と I 形鋼の重 心位置が合うようにI形鋼を配置すればよいと考えられ る. なお、 図-3 は簡易的に 圧縮側の鉄筋 (鋼材) を割愛 して示しており、dは有効高さ、xは圧縮縁から中立軸ま での距離を示している.

ただし、レベル2 地震動等の外力に対して設計する際 に橋脚の塑性化を考慮する場合には、断面の曲げ耐力を 過小に評価する可能性があるため、I 形鋼を例えばウェ

図-3 提案構造の鋼材配置

ブとフランジに分けてそれぞれの重心位置で断面積を考 慮する等が必要になると考えられる.

3. 複合構造橋脚の交番載荷実験

3.1 実験概要

(1) 試験体概要および実験ケース

提案構造を芯材とした複合構造橋脚の繰り返し荷重作 用下における構造性能を確認するため、正負交番載荷実 験を実施した.試験体は RC 構造の試験体(以下, Case1) と、複合構造の試験体(以下, Case2),および Case2 に 対して帯鉄筋と中間帯鉄筋を低減した試験体(以下, Case3)の合計3体を使用した.既往の実験^{5,6}より、ス タッドを配置しない場合は、鋼材とコンクリートとの一 体性が低下することが明らかとなっていることから、本 実験の Case2 および Case3 ではスタッドを配置した試験 体としている.

Case1 および Case2 の形状寸法と配筋を図-4 に示す. また,各試験体の橋脚断面図を図-5 に示す. 試験体は 橋脚部の断面が 600 mm×900 mm,橋脚高さが 3000 mm で下部に 2000 mm×1600 mm,高さ 800 mmのスタブを 設けている. スタブは反力床に固定している.

Casel では、柱主鉄筋として D25 の異形鉄筋を図-5 に示すように計 32 本配置している. 帯鉄筋は D13 を橋 脚基部から高さ2000mmまでは100mmピッチとし、そ れより上方はジャッキ取付との兼ね合いから,約100mm ピッチとしている. 中間帯鉄筋は D13 を図-5 に示すよ うに配置している. Case2 は, 柱の主鋼材として 150×75×5.5×9.5のI形鋼を用いており, Casel における主 鉄筋4本分を1本の1形鋼に置換している. 試験体寸法 と中間帯鉄筋の間隔から, 主鉄筋4本を対象に1形鋼に 置換しているが、実橋脚においても橋脚寸法や中間帯鉄 筋の間隔等を考慮してⅠ形鋼に置換する主鉄筋本数を決 めることとなる. I形鋼の配置については、2.3節に記し た考え方に基づいている.帯鉄筋および中間帯鉄筋につ いては、Case1 と同じである. Case3 は、Case2 と比較し て帯鉄筋の間隔を 250 mm ピッチ (Case1, Case2 の 2.5 倍)と拡げている. 試験体の曲げせん断耐力比が RC 換 算で1に近い程度まで帯鉄筋の数量を低減している. RC

(a) Casel

図-5 試験体の断面図(単位:mm)

(b) Case2

換算していることから、帯鉄筋間隔を250 mm ピッチと した場合の RC と Case3 のせん断強度にどの程度の違い があるのかについては、今後構造計算を行い明らかにす る予定である.中間帯鉄筋については、図-5 に示すよ うに Case2 と比較して半分とする.各試験体の鉄筋比は、 Case1 の主鉄筋比が 0.030、Case2 および Case3 の主鋼材 比が 0.032、横拘束鉄筋比は Case1 および Case2 が 0.013、 Case3 が 0.0034 となっている.ウェブに配置するスタッ ドは、軸径 10 mm、全高 40 mm の頭付きスタッド(頭径 19 mm、頭高 7 mm)を用い、2.2 節に基づき 200 mm ピ ッチで千鳥配置とする.ただし、本試験体で使用するス タッドは文献 9)に記載されている式の適用範囲外である ため、参考値としてスタッド本数を設定している.試験 体製作において、スタッドの溶接後にスタッドの曲げ試 験を実施しており、溶接性に問題ないことを確認してい る. なお、スタッドの軸径や高さについては、スタッド に要求されるせん断耐力を基に、試験体のI形鋼の寸法 も考慮して設定しているため、実橋脚においては軸径や 高さも大きくなると思われる.また、スタッド配置につ いては、既往の実験⁹より良好なひび割れ分散性を示し たことから、今回の実験においても千鳥配置としている. I形鋼を用いた試験体の製作状況を写真-2に、試験体の セットアップ状況を写真-3に示す.

(c) Case3

橋脚の軸方向には,一般に上部構造の死荷重反力に相 当する軸力が作用する.軸力は橋脚の塑性変形性能や耐 荷力に影響を及ぼすため,軸力を作用させて実験を行う.

写真-2 試験体製作状況

写真-3 試験体のセットアップ状況

軸力を作用させる方法としては、軸力加力装置を用いる 方法やPC鋼棒の緊張による軸力導入方法が挙げられる. また軸力加力装置を使用する場合に、水平変位の変化に 追随して軸力加力装置が水平方向に移動が可能であれば、 軸力が常に鉛直下向きに作用するため水平荷重に影響を 及ぼすことは少ない.本実験では実験施設の制約から、 PC鋼棒の緊張にて軸力を導入する方法とした.図-4に 示すように橋脚軸中央にPC鋼棒を配置し、橋脚頭部お よびスタブ下端で定着させ、橋脚頭部にセットしたセン ターホール型ジャッキによってPC鋼棒を緊張させた. 導入する軸力は一般的な道路橋脚を想定し、橋脚断面に 1 MPa が作用するように、PC 鋼棒に 540 kN の軸力を導入した.

表-1 鋼材の機械的性質

	降伏点	引張強度	ヤング係数	規格	
	N/mm ²	N/mm ²	$\times 10^3$ N/mm ²		
鉄筋D25	373.2	559.7	184.0	SD345	
鉄筋D13	386.9	541.3	181.5	SD345	
I形鋼150×75	302.6	414.7	182.3	SS400	
頭付きスタッド	430.0	489.7	—	SS400	
PC鋼棒	1144.0	1261.0	_	C種1号	

表-2 コンクリートの材料特性

	圧縮強度	割裂引張強度	ヤング係数	
	N/mm ²	N/mm ²	$\times 10^{\circ} \text{ N/mm}^2$	
Case1	37.8	2.8	34.3	
Case2	39.8	3.1	32.7	
Case3	44.7	3.4	35.3	

図-6 曲率の計測方法 10)

(2) 載荷方法

実験は、構造部材の変形性能やエネルギー吸収性能を 評価するために通常実施される正負交番載荷実験に基づ いた¹⁰⁾.実験に際しては、橋脚基部の主鉄筋および I 形 鋼ウェブに貼付したひずみゲージが降伏ひずみ ε_y (主鉄 筋は 2058 μ , I 形鋼は 2168 μ)に達した際の変位を基準降 伏変位 δ_y として定義した.載荷方法は、載荷ジャッキ

(1000 kN)を橋脚基部(スタブ上面)より高さ H=2500 mm に設置し、基準降伏変位 δ_y の整数倍として、 $\pm 1\delta_y$ 、 $\pm 2\delta_y$ 、 $\pm 3\delta_y$ をそれぞれ 3 サイクル繰り返し、その後 $\pm 4\delta_y$ 、 $\pm 5\delta_y$ はそれぞれ 2 サイクル繰り返し、 $\pm 6\delta_y$ 以降は 1 サイ クルずつ載荷を行った. Casel は $\pm 12\delta_y$ において前ステッ プより 2 割以上の荷重低下が見られたため、 $\pm 12\delta_y$ までの 載荷とした. Case2 は $\pm 13\delta_y$ まで繰り返し載荷を行った後、 $16\delta_y$ まで単調載荷を実施し、Case3 は $\pm 12\delta_y$ まで繰り返し 載荷を行った後、 $16\delta_y$ まで単調載荷を実施した.

(3) 使用材料および計測項目

実験で使用した鋼材の機械的性質を表-1 に、コンク リートの材料特性を表-2 にそれぞれ示す.鋼材の引張 試験やコンクリートの圧縮試験および静弾性係数試験は JIS 規格に準じて実施している.コンクリートは、交番載 荷実験日材齢における材料特性である.計測項目は、鉄 筋およびI形鋼のひずみ、載荷ジャッキの水平荷重、橋 脚柱の水平変位,橋脚柱のひび割れ性状である.また, 橋脚基部の塑性ヒンジ近傍の弾塑性挙動やあらかじめ想 定した塑性ヒンジ長の妥当性を確認するため,曲率の計 測を行った.曲率は図-6に示すように変位計を橋脚高 さ方向に複数設置し,式(1)により計測区間内の断面にお ける平均曲率として算出した¹⁰.

$$\phi = \left(\Delta_T - \Delta_C\right) / D_t \cdot h \tag{1}$$

- ここで、φ :計測区間内の断面における平均曲率 Δ_T, Δ_C:計測区間における引張縁近傍および 圧縮縁近傍の相対変位
 - D_t : 引張縁と圧縮縁に配置された変位計の距離
 - *h* : 計測区間長

3.2 実験結果および考察

(1) 荷重-変位関係

各試験体における載荷位置での荷重-変位関係を図-7 に示す. 各試験体の基準降伏変位 δ_vは, Casel が 19.17 mm, Case2 が 19.51 mm, Case3 が 19.02 mm であった. Case1 は、26、以降で荷重が 600 kN を超え、その後も荷重 が低下することなく推移しているが、9δ,から徐々に荷重 が低下し、12₀、で大きく荷重が低下している. 履歴ルー プは若干くびれた紡錘形状を示し、一般的な RC 橋脚の 履歴を描いている. Case2 は、最大荷重は 26、で迎えるも ののその後大きな荷重低下はなく安定した挙動を示して いる. 136、以降は単調載荷を行ったが、166、まで大きな 荷重低下は生じなかった. Case3 も Case2 と同様に最大 荷重は $2\delta_v$ となり、 $5\delta_v$ まではCase2 とほぼ同じ挙動を示 したが、6δ、以降より緩やかに荷重が低下している、これ は帯鉄筋や中間帯鉄筋が Case2 に比べ少ないことが関係 していると推察されるが、損傷状況も踏まえて次項にて 考察する. Case2 および Case3 の履歴ループはともに紡 錘形状を示しおり, エネルギー吸収性能が高いと思われ る.

設計耐力と実験値を比較したものを表-3 に示す.表中に記載している公称値は、コンクリートの圧縮強度 30 N/mm²,鉄筋の降伏強度 345 N/mm²,鋼材の降伏強度 235 N/mm²を用いて設計耐力を算定している.試験値については、表-1 および表-2 に示した材料特性値を用いて算定した設計耐力である.またひび割れ発生荷重の試験値

は、目視での読み取り値である.実験結果と比較すると、 終局荷重は公称値との比較で1.14~1.28倍と十分な安全 性を有しており、試験値では1.05倍と各試験体とも同様 の精度であることを確認できる.次に、実験で使用した 鉄筋およびI形鋼の機械的性質が異なることから、各ケ ースで発生した水平荷重Pを各ケースの終局荷重(試験 値)Pudで除した荷重比として各試験体の包絡線を図-8

図-7 荷重-変位関係

祝一3 成市間分子 关映 値 こ の 比較 単位:kN								
実験ケース		ひび割れ発生荷重		降伏荷重		終局荷重		宝殿 / 赤卦 (奴 巳)
		設計値	実験値	設計値	実験値	設計値	実験値	天歌/取司(於向)
Case1 -	公称值	69.3	91.1	420.9	524.5	572.8	651.0	1.14
	試験値	81.9		467.8		618.2		1.05
Case2	公称值	81.0	120.5	307.6	519.5	456.9	585.0	1.28
	試験値	101.0		401.1		555.7		1.05
Case3	公称值	81.0	120.5	312.0	516.3	455.2	580.4	1.28
	試験値	101.0		405.4		550.2		1.05

表-3 設計耐力と実験値との比較

に示す.この結果から,提案する複合構造橋脚は従来の RC橋脚と同等の耐荷性能があり,変形性能としては10₀ (約200mm)以降もじん性に優れているが,帯鉄筋や中 間帯鉄筋を大きく低減すると徐々に耐力が低下すること が分かる.

各載荷変位1サイクル目の最大水平荷重を最大変位で 除した見かけの剛性と、除荷後の残留変位について、正 (+)側載荷のステップで整理したものを図-9に示す. 複 合構造橋脚(Case2, Case3)は、見かけの剛性、残留変位 ともに RC 橋脚(Casel)と同程度であることが分かり、 耐荷性能として同等であると言える.次に、各サイクル での履歴吸収エネルギーについて、そのサイクルで吸収 したエネルギーとその前までに吸収した累積吸収エネル ギーの変化を図-10 に示す. 5δ, まではどのケースも同 程度のエネルギー吸収性能であるが, 5δ_v以降は Case2 の サイクル吸収エネルギーが一定の比率で大きく増加して いる. これは繰り返し荷重作用時に紡錘形状の履歴ルー プを描くことからもエネルギー吸収性能が高い構造であ ると言える. 一方 Case3 も紡錘形状の履歴ループを描い ていたが、6δ、以降は耐力が徐々に低下していたことから、 エネルギー吸収量としては Case2 に比べ小さくなったと 考えられる.

(2) 損傷状況

損傷はいずれの試験体においても、曲げ破壊先行型で あり、曲げひび割れの発生、かぶりコンクリートの剥離 および剥落、主鉄筋または主鋼材の座屈および破断の順

図-10 履歴吸収エネルギー

番で発生した.

Casel では載荷に伴う水平ひび割れの増加後, $5\delta_y$ から かぶりコンクリートの剥離が始まった. $8\delta_y$ で橋脚基部か ら 300 mm の高さまでかぶりコンクリートの剥落, $9\delta_y$ で 主鉄筋の座屈が確認された. $12\delta_y$ で主鉄筋が破断し, 載 荷を終了した. 図-7 に示した荷重-変位関係において, $9\delta_y$ より発生荷重が緩やかに低下しているのは, 主鉄筋が 座屈したためと考えられ, さらに $12\delta_y$ において荷重が大 きく低下したのは, 主鉄筋の破断によるものと思われる. $12\delta_y$ で生じた主鉄筋の破断状況を写真-4 に示す.

Case2 は水平ひび割れの増加後,5₀からかぶりコンク リートの剥離が始まった.その後9₀で橋脚基部から150 mmの高さまでかぶりコンクリートが剥落した.主鋼材 については、フランジは帯鉄筋の影響でやや変形が生じ ていたものの、載荷終了となる16₀までウェブの座屈や 主鋼材のはらみ出しは確認されなかった.図-7の荷重 一変位関係で載荷終了まで荷重の大きな低下が見られな かったのは、主鋼材の座屈やはらみ出しがなかったため だと推察される.またフランジ間のコンクリートの剥落

写真-4 主鉄筋の破断状況(12ん)

は、載荷終了時まで確認されなかった.

Case3 は水平ひび割れの増加とともに 36,から鉛直方 向のひび割れも増えており、46vからかぶりコンクリート の剥離が生じた.86yで橋脚基部から300mmの高さまで かぶりコンクリートが剥落し、10δyでは基部から 700 mm の高さまでかぶりコンクリートが剥落した. 116v では主 鋼材のフランジが帯鉄筋により大きく変形し、主鋼材が はらみ出す状況も確認された. このときにフランジ間の コンクリートも剥落した. I 形鋼は鉄筋に比べ座屈抵抗 性が高いとは言え、塑性ヒンジ部においては鋼材の圧縮 変形に抵抗するための帯鉄筋や中間帯鉄筋が不足してい たことが要因であると考えられる. Case2 と比較して広 い範囲でかぶりコンクリートの剥落が生じたこと、主鋼 材のはらみ出しが見られたことにより、Case2 に比べ載 荷変位の増加に伴い耐力が低下したことが、図-7の荷 重-変位関係に表れているものと推察される. 10₀ にお ける各試験体のN面の損傷状況を写真-5に示す.

各試験体のひび割れ性状として、かぶりコンクリート の剥離が開始,進展した+5δ,におけるひび割れスケッチ を図-11に示す.載荷変位の1サイクル目を示している. ひび割れスケッチは、正(+)側の載荷で生じたものを青線、 負(-)側で生じたものを赤線で記しており、グレーの斜線 ハッチングはコンクリートの剥落を示している.ひび割 れ図は、E 面、N 面、W 面を展開図として示しており、 橋脚基部から1500mmの範囲を対象としている.ひび割 れの分散性に着目すると、Casel のひび割れ本数が若干 多いことが分かる. これは Casel の鉄筋のかぶり厚さと Case2 および Case3 のウェブから最外縁までの距離の違 いが要因として考えられる.また Case2 と Case3 を比較 すると、Case3 のひび割れ間隔が広く橋脚基部付近では 鉛直方向へのひび割れも多くみられる. これは帯鉄筋間 隔が広いためひび割れ分散性が低下し, I 形鋼のフラン ジのはらみ出し量が Case2 に比べ大きいため鉛直方向に ひび割れが生じたものと推察される. ひび割れ幅につい ては, 図中に〇印で示した箇所が最大となっており, Case1 で 5.5 mm, Case2 で 3.5 mm, Case3 で 5.0 mm であ った. Case2 ではひび割れ幅が小さく Case1 および Case3 でひび割れ幅が大きくなる傾向が窺える.

図-11 ひび割れ性状スケッチ (+5_{by})

写真-6 切断後の試験体状況

Case2 および Case3 について,実験終了後に橋脚基部 で切断した状況を写真-6 に示す. Case2 はフランジの一 部で帯鉄筋による変形等が見られたものの,座屈やはら み出しは確認されなかった.一方 Case3 は,帯鉄筋によ るフランジの変形とともに鋼材がはらみ出しているのが 確認できる. なお,スタッドの破断については Case2, Case3 ともに確認されなかった.

(3) 曲率分布

各試験体の載荷変位1サイクル目における最大曲率の 高さ方向分布を図-12に示す.曲率は式(1)より平均曲率 として算出した. Casel は 6∂_y以降にかぶりコンクリート の剥落によって変位計の取り付け箇所に浮きが生じたた め、5∂_yまでの結果を掲載している. 図より、橋脚基部か ら 50 mmの位置で大きな曲率を示しており、250 mmの 位置でも若干値が大きくなっている. ここで Casel の試 験体を対象に塑性ヒンジ長を算出する. 塑性ヒンジ長を 道路橋示方書¹¹に従い算出すると、194.0 mm となった. 大きな曲率は塑性ヒンジの範囲内で発生しているが、載 荷変位が増加すると、計算で求めた塑性ヒンジ部より上 方においても曲率が大きくなる状況が窺える. Case2 は

図-13 主鉄筋および主鋼材のひずみ分布

図-15 中間帯鉄筋のひずみ分布

計測可能であった 86, までの結果を示している. Case2 で は橋脚基部から150 mm の位置までの曲率が大きくなっ ており、Casel の試験体を基に算定した塑性ヒンジ長の 範囲内に概ねおさまっている. 先述した損傷状況におい て、かぶりコンクリートの剥落は橋脚基部から 150 mm の範囲であったが、その結果と整合している. Case3 は 6δ、において計測データに不備があったため除外し、9δ、 までの結果を示している. Case2 と比較して, 橋脚基部か ら 250 mm の位置においてやや曲率が生じており,78y 以 降は橋脚基部から 350 mm の位置においても曲率が大き くなっている.荷重-変位関係において 6δ,以降の耐力 が低下していること,86vで橋脚基部から300mmの範囲 までかぶりコンクリートの剥落が確認されていることと 整合していると考えられる. 以上のことから, 適切に帯 鉄筋や中間帯鉄筋が配置された複合構造橋脚においては、 道路橋示方書で示されている RC 橋脚の塑性ヒンジ長の 算定法を準用できると言える.

(4) 主鉄筋および主鋼材のひずみ分布

Casel の主鉄筋および Case2, Case3 の主鋼材ウェブに おける橋脚高さ方向のひずみ分布を図-13 に示す.比較 対象とした主鉄筋および主鋼材ウェブを図中に断面図を 追加して示している. 各試験体でひずみゲージが計測で きる載荷変位までをプロットしており, 一部ゲージ破断 で計測できなかった箇所については図中に併記している. Case1 は載荷変位の増大に伴って、橋脚基部より 350 mm の範囲において鉄筋ひずみが増加している状況が分かる. 軸ひずみとしては5δ、までの計測になっているが、8δ、で 橋脚基部から300mmの範囲でかぶりコンクリートの剥 落が生じていることから、主鉄筋はこの範囲において主 に荷重を負担していたと推察される. Case2 では 26, で橋 脚基部から 250 mm のひずみが大きくなり、その後基部 から150mmの範囲におけるひずみの増加が顕著となる. これは損傷状況や曲率分布の結果とも整合している. Case3 も Case2 と同様の傾向を示している. なお、Case3 の帯鉄筋は橋脚基部より 250 mm ピッチで配置している が、例えば基部から125 mmの位置に帯鉄筋を配置した 上で 250 mm ピッチで配置する等,橋脚基部の帯鉄筋配 置を変更することで、主鋼材に発生するひずみ量を低減 できた可能性が考えられる.

(5) 帯鉄筋および中間帯鉄筋のひずみ分布

各試験体の帯鉄筋および中間帯鉄筋に発生するひずみ を橋脚高さ方向に分布図としたものを図-14,図-15に 示す. 主鉄筋および主鋼材のひずみ分布と同様に、計測 できた載荷変位までを掲載している. Casel は帯鉄筋,中 間帯鉄筋ともに載荷変位の増加に伴って発生ひずみ量も 増加しており、帯鉄筋は橋脚基部から 300 mm の範囲で より増加傾向が見られる. 圧縮域で主鉄筋が帯鉄筋をコ ンクリート最外縁へ押し出すような挙動が帯鉄筋のひず み量の増加として表れており、その結果 85v において橋 脚基部から 300 mm の範囲でかぶりコンクリートが剥落 することに繋がった可能性がある. Case2 は載荷変位が 増加しても、帯鉄筋、中間帯鉄筋ともにひずみ量がさほ ど増加しない状況が窺える. I 形鋼は鉄筋に比べ座屈抵 抗性が高いことから、鋼材圧縮時に帯鉄筋に荷重を負担 させにくい構造であり、その結果中間帯鉄筋に伝達され る荷重も少なくなると思われる. Case3 の帯鉄筋は Case2 と同様にひずみ量の増加は小さいものの、5₀において橋 脚基部からの高さ250mmの位置で急激に増加している。 Case3 は最終的に主鋼材のはらみ出しが確認されたこと や 6₀ から緩やかに耐力が低下していること等を考える と、載荷変位の増加に伴い主鋼材の圧縮変形が帯鉄筋へ 影響を与えていると推察される. Case2 と比較すると,帯 鉄筋の低減が Case3 の帯鉄筋ひずみの増加に繋がってい ると考えられるため、I 形鋼は座屈抵抗性が高いものの、 帯鉄筋を適切に配置する必要があると言える. Case3 の 中間帯鉄筋も Case2 と比較して大きなひずみ量が発生し ているが、これは中間帯鉄筋を半分に低減している直接 的な影響と、帯鉄筋も低減されていることから帯鉄筋か らの荷重伝達が増加した影響もあると考えられる.なお, 前項でも述べたように、橋脚基部から125mmの位置に 帯鉄筋を配置した上で250mmピッチで配置する等の帯 鉄筋の配置を変更すれば、帯鉄筋や中間帯鉄筋に発生す るひずみ量を低減できた可能性が考えられる.

なお、スタッドに発生したひずみと文献 5)で示してい たスタッドの設計法の妥当性については、スタッドで計 測されたひずみゲージが橋脚変位で約 50 mm(およそ 3 る,) までしか取得できていないが、3 る,におけるスタッドの発 生ひずみの最大値は約 1210µ(発生位置は橋脚基部より 50 mmの高さ)であり、弾性範囲内の応答に留まってい る. I 形鋼の降伏時においては、発生ひずみは約 560µで あり弾性範囲内となっている. このことから、文献 5)で 示したスタッドの設計法は概ね妥当であったと推察され る. しかし、降伏後においてスタッドがどのように効果 を与えているのかについては不明であるため、今後解析 的な検討を行い明らかにする予定である.

4. 結論

本研究では, RC 橋脚の施工の合理化を目的に, I 形鋼 のウェブにスタッドを配置した構造を芯材として橋脚へ 適用することを提案した.この複合構造橋脚の構造性能 を確認するため、交番載荷実験を実施した.

本研究で得られた知見を以下に示す.

- 複合構造橋脚は、従来の RC 橋脚と比較して耐荷性 能は同程度であり、変形性能としてはじん性に優れ る構造であることを確認した。
- 2) 複合構造橋脚は、材料試験値を用いた設計耐力を上回る耐力を有しており、RC断面計算に基づく設計法の妥当性を確認した。
- 3) 複合構造橋脚の繰り返し荷重作用下における損傷 範囲は、従来の RC 橋脚で求められる塑性ヒンジ長 に概ね包含されることから、複合構造橋脚の塑性ヒンジ部設計では、RC 橋脚における算定式の適用性 を確認した.
- 4) 提案構造に用いられるI形鋼は鉄筋と比較して座屈 抵抗性が高いため、繰り返し荷重作用による鋼材の はらみ出しや座屈、破断に至る可能性が低く、帯鉄 筋や中間帯鉄筋への負担を減らすことができると 考えられる.

上記で述べたように、複合構造橋脚では従来の RC 橋 脚と比較して帯鉄筋や中間帯鉄筋の配筋量を低減できる 可能性があるが、繰り返し荷重によって大きな損傷が発 生する橋脚基部周辺や塑性ヒンジ部においては、帯鉄筋 や中間帯鉄筋の配筋量を低減させると、損傷範囲と程度 が拡大する可能性も交番載荷実験により示された.した がって、橋脚基部周辺や塑性ヒンジ部とその上方で帯鉄 筋や中間帯鉄筋の配筋量、配筋間隔を変化させることで 合理的な設計ができる可能性が考えられる.今後は解析 的な検討も含め、複合構造橋脚の合理的な設計法につい て検討する予定である.

参考文献

- (公社)日本道路協会:道路橋示方書・同解説V耐震設 計編,2017.
- 2) 原夏生、河野一徳、篠田佳男、横沢和夫、町田篤彦: 突起付き H 形鋼とプレキャスト型枠を用いた鉄骨コンクリート複合構造橋脚の構造性能に関する研究、土 木学会論文集, No.662/V-49, pp.149-168, 2000.
- 3) 東邦和,福井次郎,橋本万多良,長澤保紀,原夏生: スパイラル筋を用いた SRC 橋脚構造の耐震性能,第2 回地震時保有水平耐力法に基づく橋梁の耐震設計に 関するシンポジウム講演論文集,pp.193-196,1998.
- 4) 村尾光則, 篠崎裕生, 澤井淳司, 富山茂樹, 三上浩, 睦好宏史:外面リブ付鋼管を有するコンクリート合成 構造橋脚の耐震性能に関する実験的研究, 土木学会論 文集 E2 (材料・コンクリート構造), Vol.71, No.1, pp.1-13, 2015.
- 5) 宇野州彦,池野勝哉,藤倉修一,篠田佳男:I形鋼の ウェブにスタッド配置した複合構造のコンクリート

付着特性, コンクリート工学年次論文集, Vol.43, No.2, pp.937-942, 2021.

- 6)藤倉修一,柳谷一輝,宇野州彦,篠田佳男:I形鋼を 用いた新たな複合構造の曲げ耐荷性能に関する実験 的研究,コンクリート工学年次論文集, Vol.43, No.2, pp.943-948, 2021.
- 7) 島弘, 渡部誠二: 頭付きスタッドのせん断力―ずれ関係の定式化, 土木学会論文集 A, Vol.64, No.4, pp.935-947, 2008.
- 8) 大城壮司,上條崇,奥井義昭,長井正嗣:プレキャス ト床版連続合成桁のずれ止めに関する実験および解 析,土木学会論文集 A1 (構造・地震工学), Vol.68,

No.2, pp.331-346, 2012.

- 9) (公社)土木学会: 2014 年制定 複合構造標準示方書 [設計編], pp.68-73, 2015.
- 10)土木研究所 耐震研究グループ耐震チーム:橋の耐 震性能の評価に活用する実験に関するガイドライン (案)(橋脚の正負交番載荷実験方法及び振動台実験 方法)、土木研究所資料, No.4023, 2006.
- 11)(公社)日本道路協会:道路橋示方書・同解説V耐震設 計編, pp.184-199, 2017.

(2021年9月14日受付) (2022年2月1日受理)